用Python做数据分析光是掌握numpy和matplotlib可不够,Pandas是必须要掌握的一个重点,numpy虽然能够帮我们处理处理数值型数据,但是这还不够,很多时候,我们的数据除了数值之外,还有字符串,还有时间序列等,比如:我们通过爬虫获取到了存储在数据库中的数据。
今天来分享一些Pandas必会的用法,让你的数据分析水平更上一层楼。
一、Pandas两大数据结构的创建
序号 | 方法 | 说明 |
---|---|---|
1 | pd.Series(对象,index=[ ]) | 创建Series。对象可以是列表ndarray、字典以及DataFrame中的某一行或某一列 |
2 | pd.DataFrame(data,columns = [ ],index = [ ]) | 创建DataFrame。columns和index为指定的列、行索引,并按照顺序排列 |
举例:用pandas创建数据表:
].drop_duplicates()
结语
文章中总结的是都是一些Pandas常用的方法,至于一些基础的概念还需要你学到Pandas的时候去理解,例如Series是什么?DataFrame是什么?如果你已经清楚了Pandas的这些基础东西之后,搭配上文章中的这些方法,那你用Pandas去做数据处理和分析必然会游刃有余。
本文为原创文章,版权归知行编程网所有,欢迎分享本文,转载请保留出处!
你可能也喜欢
- ♥ 数据分析告诉你,历年的诺贝尔奖都被哪些人拿走了?02/22
- ♥ 30个Pandas高频使用技巧02/23
- ♥ 70个数据分析常用网址,我先收藏了!01/16
- ♥ 对比Excel,学习pandas数据透视表02/06
- ♥ WSGI 在 python 中的工作原理11/26
- ♥ python如何进行四次算术运算?09/01
内容反馈